Nitinol shape memory alloy, PEEK-coated screw dehydrogenation method

31 Jul.,2025

Risk: Hydrogen absorption during electropolishing, acid pickling, or plating can cause brittle fractures and loss of shape memory effect. Dehydrogenation Methods: A. Low-Temperature Vacuum Annealing (Best for Medical Nitinol) Temperature: 300–400°C (572–752°F) (below phase transformation temp to avoid altering shape memory). Time: 2–4 hours (longer for thicker components). Vacuum Level: ≤10⁻⁵ m

 

Author: Robby

Hydrogen Removal Methods for Nitinol (NiTi) Shape Memory Alloy & PEEK-Coated Screws

Due to the unique properties of Nitinol (superelasticity, shape memory) and PEEK (polymer coating), hydrogen removal requires specialized approaches to avoid damaging functionality.


1. Nitinol (NiTi) Implants & Fasteners

Risk: Hydrogen absorption during electropolishing, acid pickling, or plating can cause brittle fractures and loss of shape memory effect.

Dehydrogenation Methods:

A. Low-Temperature Vacuum Annealing (Best for Medical Nitinol)

  • Temperature: 300–400°C (572–752°F) (below phase transformation temp to avoid altering shape memory).

  • Time: 2–4 hours (longer for thicker components).

  • Vacuum Level: ≤10⁻⁵ mbar (prevents oxidation).

  • Standard: ASTM F2063 (Nitinol medical devices).

B. Electropolishing (Post-Pickling H₂ Removal)

  • Electrolyte: Methanol + perchloric acid (9:1 ratio).

  • Voltage: 20–30V for 5–10 mins (removes ~5–10µm H₂-rich layer).

  • Follow with: Ultrasonic cleaning in ethanol to eliminate residues.

C. Alternative Surface Treatments (Avoid H₂ Absorption)

  • Passive Oxide Layer (Recommended):

    • Nitric acid passivation (30% HNO₃, 20 mins) → forms protective TiO₂ layer.

  • PVD Coating (TiN, ZrN): No H₂ risk vs. electroplating.

Testing for H₂ Embrittlement in Nitinol:

  • Slow Strain Rate Test (ASTM E8/E292) in simulated body fluid (SBF).

  • DSC (Differential Scanning Calorimetry) to check phase transformation stability.


2. PEEK-Coated Screws (Polymer-Coated Implants)

Risk: PEEK itself doesn’t absorb hydrogen, but underlying metal (Ti, SS) can trap H₂ during coating processes (e.g., plasma spraying, adhesive curing).

Dehydrogenation Methods:

A. Pre-Coating Metal Treatment

  1. For Titanium/SS Substrate:

    • Bake at 200°C (392°F) for 4–6 hrs before PEEK coating.

  2. For Electropolished Surfaces:

    • Remove H₂-rich layer before PEEK application.

B. Low-Temperature Post-Coating Cure (If Needed)

  • PEEK Curing Temp: ~250–300°C (482–572°F) (some H₂ may escape during process).

  • Caution: Excessive heat degrades PEEK mechanical properties.

C. Alternative Coating Methods (Avoid H₂ Issues)

  • Laser Ablation + PEEK Bonding: No acid pickling required.

  • Cold Spray PEEK Deposition: No high heat → no H₂ diffusion.

Testing for PEEK-Coated Screws:

  • ASTM F2027 (PEEK biocompatibility).

  • Shear Bond Strength Test (ISO 29022) to ensure coating adhesion.


Failure Analysis & Case Studies

Case 1: Fractured Nitinol Stent (Hydrogen Embrittlement)

  • Root Cause: Acid pickling without post-treatment.

  • Solution: Switched to electropolishing + 350°C vacuum anneal.

Case 2: PEEK-Coated Spinal Screw Delamination

  • Root Cause: H₂ bubbles at Ti-PEEK interface from improper pre-bake.

  • Fix: Added 200°C/4hr bake before coating + laser surface texturing.


Best Practices Summary

Material Best Dehydrogenation Method Key Parameters
Nitinol Vacuum Annealing 300–400°C, 2–4 hrs, 10⁻⁵ mbar
PEEK-Coated Pre-Coating Bake (Metal Substrate) 200°C, 4–6 hrs (before coating)
Critical Note Avoid electroplating Nitinol (use PVD instead).