ThinGap high power density brushless motors

27 Oct.,2022

 

WingFlying Drone Thrust Test

Central to the deployment of cutting edge technologies that require dynamic sensors and precision photonics, such as self-driving cars, laser communication, and medical equipment, optical stages are at the core of these systems. Optical systems often require precise, highly linear and cogless brushless DC motors to actuate lenses and prisms for directing laser beams, or to collect light need in high speed communications, sensing, or scanning.

An optical platform refers to any instrument that relies on photons to transmit, receive, or direct energy. Common forms of optical platforms include metrology instrumentation, medical diagnostics, inspection equipment, free-space laser communication, as well as LiDAR scanners.

Optical Communications Terminals (OCT), used in both terrestrial and space-based applications are a kind of gimbaling device that transmit and receive data through free space. Mounted on a turret, these devices use highly collimated light generated by lasers to communicate at high rates of speed, over long distances, including in satellite-to-satellite communication. ThinGap’s LS Series of slotless motor kits is an industry leader for gimbal applications requiring high performance and efficiency, as well as decisive move-and-hold positioning, and smooth motion for long-range target lock. LS motors have been widely used in OCT systems and even NASA’s PACE Mission’s optical scanner.

The emergence of self-driving vehicles and other unmanned systems has been enabled by the integration of LiDAR technology. LiDAR is an acronym that stands for Light Detection And Ranging, and operates by projecting out laser energy and then measuring the time it takes for it to be returned. LiDAR platforms benefit from slotless motor technology, such as ThinGap’s TG series that combines extremely precise and controlled movement, high speed, and a large throughhole needed for tight integration.

Broader use of optical systems includes laser guidance and directed energy for the military, scientific spectroscopy, and medical treatment and diagnostics. Industrial segments, like semiconductor wafer processing and test heavily rely on the precision of optical systems, as does material processing. In most cases, to leverage the precision of highly collimated light and highly sensitive sensors, precision actuation is need in the form of smooth motion profiles, highly linear torque constant and little or no hysteresis caused by the motor.

Low profile and high torque air-core motors are a perfect fit for many optical systems. With a large through hole, lenses or prisms can be integrated inside the footprint of the motor. Precision, cogless motion is demanded in both transmission and receipt of photonic signals, and quality, qualification for medical or space and reliability go together with these targeted applications.

ThinGap’s LS and TG Series of motor kits come in sizes from 25 mm up to 267 mm OD, with modified and full custom options are also available. All ThinGap motors are zero cogging and have a thin coil, with a large through-hole. The LS Series are designed for torquer motor applications, and feature a steel lamination stack that retains the stator coil, and ideal thermally efficient architecture for clamping or bonding into systems. The TG Series offers both high speed and high torque performance, and is ideal for haptic feedback because its ironless stator produces no attractive forces when unpowered.